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Abstract- Bugs are nothing but Software defects, present a 
serious challenge for system consistency and dependability. It is 
very difficult task to predict bugs. To detect the bugs from the 
software bug prediction is useful way. Machine learning 
classifiers have emerged newly as a way to envisage the existence 
of a bug in a change made to a source code. The machine 
learning classifier is first skilled on software history data and 
then it is used to predict bugs. Two main drawbacks of existing 
classifier-based bug prediction are insufficient accuracy for 
practical use and deliberate prediction time because of a large 
number of machine learned features. In this paper we have 
proposed mainly two techniques cos-triage algorithm which tries 
to utilize both accuracy and cost of bug prediction and feature 
selection techniques which discard less important features until 
optimal classification performance is reached.  Reducing the 
feature improve the quality of knowledge extracted and also 
enhance the speed of computation. 
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I.  INTRODUCTION 

Machine learning Classifiers, when skilled on historical 
software project information, it can be used to guess the 
existence of a bug in an individual file-level software change, 
as verified in previous work by the second and fourth 
authors[1].First cos-triage algorithm is used to fixing bug and 
that record is stored in historical data or in log record and then 
classifier is trained on information found in historical log 
record and it can be used to classify a new change as being 
either buggy (predicted to have a bug) or clean (predicted to 
not have a bug). 
Recently, we have formed a prototype displaying server-
computed bug predictions within the Eclipse IDE [3]. A bug 
prediction system must also  provide highly specific  
predictions. If software engineers are to faith a bug prediction 
system, it must provide a small number of false changes that 
are predicted to be buggy but which are very clean.[4] If large 
numbers of clean changes are falsely predicted to be buggy, 
developers won’t have faith in the bug prediction  
Bug prediction service must also provide accurate predictions. 
If engineers are to faith a bug prediction service, it must 
provide very few “forged alarms,” changes that are predicted 
to be pram but which  really clean [16].If as well many clean 
changes are incorrectly predicted to be buggy, developers will 
lose trust in the bug prediction system.   

Kim et al.[1] developed the former change classification bug 
prediction approach  and similar work done by Hata et al[2]. 
Which employ the extraction of “features” (in the machine 
learning sense, which differs from software features) from the 
history of changes made to a software project. They include 
everything divided by whitespace in the code that was 
included or excluded in a change. Thus, all 
variables,comment words, mathematical operators, name of 
methods, and programming language keywords are used as 
features to instruct the SVM classifier which is present in this 
paper.    
Price of large feature set is extremely high. Because of 
composite interactions and noise classifiers cannot handle 
such a large feature set. As well as number of features 
increases time also increases, rising to several seconds per 
classification for tens of thousands of features, and minutes 
for large project data histories. This will affects the scalability 
of a bug prediction service. 
This paper uses multiple feature selection techniques to 
develop classifier performance. Although many classification 
methods could be working, this paper focuses on the use of 
cos-triage algorithm and SVM. 
 
This paper contributes three aspects: 

1. Study of multiple feature selection techniques to 
classify bugs in software code changes.  

2. Use of cos-triage algorithm to utilize   accuracy 
and cost of bug prediction. 
 

The rest of this paper is organized as follows: In Section 2 
primary steps involved in performing change classification is 
presented. Also this section discuss about feature selection 
techniques in more detail. Section 3 discuss prior work. 
Section 4 contains  system overview for proposed system. 
Finally a conclusion is made in section 5. 

 
II.CHANGE CLASSIFICATION 

Following steps are concerned in performing change 
classification on single project. 
 Creating a Corpus: 
1)  Change deltas are extracting from the log records of a 

project, as stored in its SCM repository. 
2)  For each file bug fix changes are recognized by examining 

keywords in SCM change log messages. 
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3) The buggy and clean changes at the file level are 
recognized by tracing backward in the revision log record 
from bug fix changes. 

4) Features are extracted from all changes, which include both 
buggy and clean. All expressions in Complete source 
code contains features , the lines tailored in each change  
and change meta-data such as author and change time 
also. Complexity metrics are calculated at this step 

5)Combination of wrapper and filter methods execute to 
calculate a reduced set of features.Gain Ratio, Chi-
Squared, Significance, and Relief-F feature rankers are 
used by filter method. The wrapper methods are depends 
on  the SVM classifiers. 

6)  classification model is skilled by using reduced set. 
7) Trained classifier is set to use.  Classifier, verified whether 

a new change is more similar to a buggy change or a 
clean change. 

 
A. Finding Buggy and Clean Changes 
For bug prediction training data is set and used. Mining 
change log records is used to discover bug introducing 
changes and to recognize bug fixes. There are two approaches 
we use: searching for keywords in log records such as “Set” 
“Bug” or  other keywords likely to emerge in a bug fix, and 
searching for another references to bug. 
 
B. Feature Extraction 
Using support vector machine algorithm, a classification 
model must be skilled by using buggy and clean changes 
which is used to organize software changes. 
Everything in the source code file divided by whitespace or a 
semicolon is used as a feature which is nothing but variable 
name , method name, function name, keyword, comment 
word, and operator. 
 
C. Feature Selection Techniques 
To perform classification large feature sets need longer 
training and prediction times, also need large amounts of 
memory. Feature selection is general solution to this problem. 
In which only the subset of features that are mainly useful for 
making classification decisions are actually used. 
 
D. Feature Selection Process 
An iterative process of selecting incrementally less significant 
sets of features is done by using Filter and wrapper methods . 
This process starts by cutting the initial feature set in half 
which reduces memory and processing requirements for the 
rest of the process 
  
A classification model is skilled by using the reduced feature 
set.Then classifier whether a new change is more related to a 
buggy change or a clean change. 

 
III. RELATED WORK 

Khoshgoftaar and Allen developed model to list modules 
according to software quality factors such as future fault 

density using stepwise multiregression [5],[6],[7]. Ostrand et 
al. explored the top 20 percent of problematic files in a 
project [11] using future fault predictors and a linear 
regression model. 
Totally Ordered Program Units could be transformed into a 
partially ordered program list, e.g by presenting the top N% of 
modules as presented by Ostrand et al. Hassan and Holt 
presented  a caching algorithm to calculate the set of fault-
prone modules, called the top-10 list[9] .Kim et al.presented 
the bug cache algorithm to predict future faults based on 
preceding fault localities [10]. 
Gyimothy et al. [11] presented fault classes of the Mozilla 
project across several releases. With the help of decision trees 
and neural networks that utilize object-oriented metrics as 
features. 
Hall and Holmes [12] studied six different feature selection 
techniques when using the Naive Bayes and the C4.5 
classifier [13]. Each dataset studied has about 100 
features.Many of the feature selection techniques developed 
by Hall and Holmes are used in this paper. 
Song et al. [14] develop a general defect prediction 
framework which contain a data preprocessor, feature 
selection methods, and machine learning algorithms. They 
also consider that small changes to data representation can 
have a high impact on the results of feature selection and bug  
prediction. 
Gao et al. [15] propose several feature selection algorithms to 
predict buggy software modules for a large legacy 
telecommunications software service. Filter-based methods  
and three subset selection search algorithms are used.     
   

IV. SYSTEM DESCRIPTION 

 
. 
                                      Figure 1. System overview 
 
Above diagram fig 1. shows general overview of the system.  
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     Initially user login/register into the system. It also contains 
training data/raw data which maintains the logs or history. 
Then cos-triage algorithm is applied on that registerd 
code.Cos-triage algorithm helps us for fixing bug or defects. 
Output contains some bugs. If developer wants to fix bug then 
he fixes it else program ends .Then at the back end  that 
output with bug is used as input to support vector 
machine(SVM) classifier .SVM classifier uses different 
feature selection methods which is given in above 
section(2)..After that by reducing the features we gets final 
output without bug.SVM classifier works on trained data/raw 
data which is stored in log record. 
 
A.UML DIAGRAM 
In following section we are providing use case diagram  and 
class diagram of system 
 

 
            Fig 2.Usecase Diagram 

 
V. CONCLUSION AND FUTURE WORK 

             This paper has implemented cos-triage algorithm 
which helps to exploit the cost and accuracy of bug fixing or 
bug prediction. This paper has also implemented the feature 
selection technique which reduces the number of features 
used by  a machine learning classifier for bug prediction. 
               In the future, when software developers have 
sophisticated bug prediction technology fixed into their 
software development environment, the use of classifiers with 
feature selection will allow rapid, exact, more accurate bug 
predictions. Also many algorithm will come  in future which 
will enhance precision of bug prediction. 
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